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Abstract. We study the Hopfield model with an opposite interactional sign by using a one-
step replica symmetry breaking ansatz and the marginality condition. We show that this model
belongs to spin glass models which have a dynamical phase transition, which is not associated
with usual replica instability. Although this model is motivated by the observations about
unlearning, it has various interesting aspects: correlations among interactions, a simple meaning
as an optimization problem, and SK-like and non-SK-like spin glass phases depending on the
number of ‘memorized’ patterns.

1. Introduction

Recently, there have been several studies on spin glass models which are characterized
by the dynamical phase transitions which are not associated with the static instability of
spin glass order parameters [1–3]. Below this transition temperature, the system has many
metastable states which have higher energies than the ground state. This phenomenon is
very interesting and it is desirable to study how general such transitions are, especially in
spin models which have the usual two-spin interactions.

In this paper, we study the Hopfield model [4] with an opposite interactional sign, which
is inspired by the studies of paramagnetic unlearning in infinite range spin glass models.
We call this model the anti-Hopfield model. Although the replica theory of the Hopfield
model has already been established [5], the change of interactional sign gives rise to highly
nontrivial spin glass models. As we shall see, this model is beyond the usual static replica
theory, which may be one of the reasons why there are few descriptions of this model in
the literature. In addition, the relation between unlearning and such spin glass models will
be an attractive subject in the study of neural networks.

The idea of unlearning in REM sleep was originally suggested by some biologists as
a mechanism to remove spurious states in neural networks [6, 7]. This idea was studied
numerically for the Hopfield model and gave some promising results to improve neural
networks [8, 9]. Recently, it has been discovered that unlearning of paramagnetic spin
configurations also causes highly nontrivial changes in interactions [10, 11].

The advantage of this formulation is that the analytic studies of interactional changes
are feasible since they are expressed by paramagnetic spin correlation functions which can
be studied by high-temperature expansion. One of the important results is that the Hopfield
model evolves into the pseudo-inverse model.

The formulation by paramagnetic configurations is general enough to be applied to
other spin models such as the Sherrington–Kirkpatrick (SK) model [12]. In the case of the
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SK model, original interactions have no correlation, but the interactions after unlearning
get correlated since the change of interactions are of the Hebb-rule nature. Thus, spin
glass models with correlated interactions arise by paramagnetic unlearning, in particular
frustrations among interactions are changed. In addition to this academic interest, we have
another reason to be interested in unlearning in random neural networks. That is, according
to some biological observations [13], newborns spend a much longer time in REM sleep
than adults. At this age, neural networks develop greatly, presumably in a random manner.
Therefore, unlearning in random networks may simulate one aspect of the development of
neural networks in early life.

Let us briefly describe the relation between the anti-Hopfield model and unlearning.
The energy functions of the infinite range spin models are given by

H = − 1
2

∑
i 6=j

Jij SiSj (1.1)

where Si are spin degrees of freedom which are assumed to be Ising type±1 and Jij
are interactions.i is a site index which takes 1, 2, . . . , N . N is the system size. In the
previous papers [10, 11], it was shown that the interactions after paramagnetic unlearning
are approximately expressed by the equation

J ′ij = (1+ θ)Jij − ε
∑
k 6=i,j

JikJkj (1.2)

for small interactional changes. We can see that, after many iterations of (1.2), the Hopfield
model evolves into the pseudo-inverse model for suitable values ofθ andε (see appendix A).
When Jij are SK interactions, which have no correlation among interactions, the second
terms induce correlation amongJ ′ij . Here, instead of studying the evolution, we ask if there
are any spin glass models which have interactional correlations suggested by (1.2). After
several inspections we realize that, assuming the SK interactions forJij , the model without
the first term looks very interesting. As we will see in section 2, this model is very close
to the Hopfield model with an opposite interactional sign, i.e. the anti-Hopfield model.

This paper is organized as follows. In section 2 we discuss several aspects of the
anti-Hopfield model, especially the eigenvalue distributions of the interaction matrix. In
sections 3 and 4 replica theory for the model is discussed up to one-step replica symmetry
breaking (RSB) ansatz. Section 5 is devoted to some discussions.

2. Model description

In this section, we discuss several aspects of the anti-Hopfield model, whose interactions
are given by

J aij = −
1

N

P∑
µ=1

ξ
µ

i ξ
µ

j (2.1)

where ξµi are random quenched variables which take±1 with probability 1
2, and µ =

1, 2, . . . , P . In the following, we discuss various aspects of (2.1), especially the eigenvalue
distributions of the interaction matrix, which reveal the interesting relations to other models.

Let us first discuss the relation between (2.1) and (1.2) with 1+θ = 0 andε = 1 for the
SK model. ThenJij in (1.2) obeyJ 2

ij = 1/N , where the overbar denotes a sample average,
and no correlations amongJij . Then the correlations amongJ ′ij are given by

J ′ij J
′
j l . . . J

′
li = (−1)k

(N − k)
Nk

(2.2)
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where the number ofJ ′ij is k and site indices are all different.
In the thermodynamic limit, this expression becomes the same as the anti-Hopfield

model with the number of patternsN . In the mean-field theories such as replica method,
only correlations of interactions of the type (2.2) appear as discussed in appendix B. Thus
(1.2) without the first term are well approximated by the anti-Hopfield interactions with
α ≡ P/N = 1.

Another interesting aspect of the anti-Hopfield model lies in the fact that it is an
optimization problem whose cost function has a simple meaning. With (2.1), the energy
function becomes

H = 1

2N

∑
µ

(∑
i

ξ
µ

i Si

)2

− 1

2
Nα. (2.3)

In this form, we notice that the problem becomes a search for spin configurations which
are as orthogonal as possible to allξµ.

ForP ∼ 1, which includes the anti-ferromagnet, there are many solutions which satisfy
the condition. The casesP ∼ N show very interesting properties depending onP , which
will be presented in this paper.

Now we discuss the eigenvalue distribution of (2.1). It is commonly believed that the
eigenvectors with the largest eigenvalue of the interactional matrix govern the nature of
low-temperature spin glass states, especially in the studies of the TAP equation [14]. This
point of view is significantly helpful to discuss the relation between the anti-Hopfield model
and other spin glass models.

The interaction matrices are generally expressed by the form

Jij =
∑
λ

〈i|λ〉Jλ〈λ|j〉 (2.4)

where〈i|λ〉 are eigenvectors ofJij . For the anti-Hopfield model, by settingJλ → −Jλ in
the known results [15], we obtain the eigenvalue distribution

ρ(Jλ) =
{
(1− α)δ(Jλ)+ ρ0(Jλ) α < 1

ρ0(Jλ) α > 1
(2.5)

where

ρ0(x) = (4α − (x + α + 1)2)1/2

2π |x| . (2.6)

In these expressions, diagonal elementsJii = −α, which are irrelevant in thermodynamics,
are included for the sake of simplicity. If we want to imposeJii = 0, Jλ should be replaced
by Jλ + α in (2.4). Note thatρ(Jλ) for α < 1 has two parts:ρ0(x) which is nonzero for
−(√α + 1)2 < x < −(√α − 1)2 and the delta function which is located atJλ = 0. Thus
the largest eigenvalue isJλ = 0 which is strongly degenerated. The reason for the delta
function atJλ = 0 is that the Hopfield interaction matrix is a projection operator onto a
P -dimensional vector subspace made ofξµ. In the case of the anti-Hopfield model, the
configurations perpendicular to this space make the energy function minimum, whereas the
configurations on this space give higher energies. Forα = 1, ρ(x) has a singularity 1/

√|Jλ|
at the largest eigenvalue. Forα � 1, ρ(x) becomes similar to the semicircle law. Thus we
expect that the phase transitions becomes similar to that in the SK model asα increases,
whereas forα ∼ 1 or smaller, the anti-Hopfield model will resemble the random orthogonal
model (ROM), which is obtained by replacingJλ with ±1 in (2.4) [16].

Another spin glass model which has this property is the pseudo-inverse model [17],
which has only two eigenvalues in the interaction matrix. Studies of this model imply
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that the spin glass phase is rather different from the SK model [18, 19]. Interestingly, the
pseudo-inverse model arises from the Hopfield model by paramagnetic unlearning [10, 11].
We discuss this point in appendix A, which is also a supplementary note for the previous
paper.

The discussion above implies that the anti-Hopfield model withα < 1 has spin glass
phases very similar to the pseudo-inverse model and ROM. On the other hand forα � 1,
the model will be similar to the SK model. In the next two sections, we discuss the replica
theory of the anti-Hopfield model to study these speculations.

3. Replica symmetry theory

This section is devoted to the description of replica symmetry (RS) theory of the anti-
Hopfield model and section 4 to one-step RSB theory.

The replica theory of the Hopfield model was developed in [5]. The free energy of
the anti-Hopfield model is obtained simply by changingβ → −β in equation (2.7) in
[5]. In appendix B, we re-derive the expression of the free energy by using correlations
of interactions, which may justify the equivalence between (2.1) forP = N and (1.2) for
1+ θ = 0 in the thermodynamic limit, as discussed in section 2. Order parametersqαβ and
λαβ are also defined in appendix B.

Let us first discuss the RS solution defined byqαβ = q and λαβ = λ. Then the free
energy densityf is given by

βf = α

2

{
ln(1+ β(1− q))+ βq

1+ β(1− q) − β
}
− 1

2
λq + 1

2
λ−

∫
Dz ln 2 cosh(

√
λz)

(3.1)

which yields the saddle point equations

q =
∫

tanh2(
√
λz)Dz

λ = αβ2q

(1+ β(1− q))2
where Dz = exp(−z2/2) dz/

√
2π . The continuous phase transition point is given by

TRS = −1+√α, which is negative forα < 1. Therefore the SK-like spin glass transition
does not occur at least forα < 1. Instead of searching for the discontinuous RS transition
point, we will study more general one-step RSB solutions in the next section.

High-temperature expressions forf , entropys, and energye are given by

f = α

2β
(ln(1+ β)− β)− 1

β
ln 2

s = α

2

{
β

1+ β − ln(1+ β)
}
+ ln 2

e = −α
2

β

1+ β .

(3.2)

Note thats becomes negative forT < Ts , which is defined bys = 0. Ts is 0.113 forα = 1,
and∼ exp(−1− 2 ln 2/α) for smallα.

Figure 1 showsTRS andTs as functions ofα, as well asTg which will be introduced
in section 4. Forα < 1.4, the entropy becomes negative before RS instability take places.
This situation has been found in various complex models such as Ising perceptron and p-
spin models. Forα > 1.4, TRS> Ts , which is similar to the SK model. Thus the properties
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Figure 1. α-dependence ofTRS, Ts , andTg from bottom. Ts > TRS for α < 1.4. Spin glass
transition temperatureTg , which is defined in section 4, is also shown forα < 1.5.

of the anti-Hopfield model will be quite different depending on the value ofα. This is
consistent with the discussion about the eigenvalue distributions in section 2.

We have some remarks on these results. First, the expression (3.2) is very similar
to the Golay–Bernasconi approximation of the low-autocorrelation problem [20]. This
is due to the fact that both problems involve finding spin configurations which satisfy
many constraints. Actually, at high temperatures, eachmµ =

∑
i ξ

µ

i Si/
√
N may obey the

independent Gaussian distribution, which leads to (3.2). Secondly, we can get an idea about
the minimum of the cost function (2.3) by assuming that it is achieved atTs . With this
assumption, we obtainemin = −α/2+ α/2 exp(−1− 2 ln 2/α) for small α. Note that the
second term is exponentially small forα→ 0.

4. One-step RSB solutions

This section is devoted to the descriptions of one-step RSB solutions. The studies in
section 3 imply that our model does not belong to SK-like spin glass models forα < 1.4.
In this case, we need to discuss the dynamical phase transitions to explain the results of
numerical simulations, as was done for ROM. In the framework of one-step RSB, the
conjecture in [3] is to impose the marginality condition, which is expected to characterize
the dynamical phase transition. In the following, we shall report the results of both one-step
RSB solutions as well as the Monte Carlo (MC) simulations.
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4.1. Static one-step RSB

In the one-step RSB ansatz, the order parameter matrixqαβ is divided into(n/m)× (n/m)
sub-blocks of the sizem×m. Assumingqαβ = q1, λαβ = λ1 if α andβ belong to the same
diagonal sub-blocks, andqαβ = q0, λαβ = λ0 if not, the free energy density reduces to

βf = α

2

{
1

m
ln(1+ βxm)+

(
1− 1

m

)
ln(1+ βx0)+ q0

β

1+ βxm − β
}

+ 1
2{(m− 1)λ1q1−mλ0q0} + 1

2λ1

− 1

m

∫
Dz ln

∫
Dy

{
2 cosh

(√
λ0z+

√
λ1− λ0y

)}m
(4.1)

wherexm = 1+m(q1 − q0)− q1 andx0 = 1− q1. The details of the derivation are given
in appendix B.

Let us first discuss the results forα = 1.0, which corresponds to unlearning in the SK
model. LetT1 be the temperature at which static one-step RSB solutions appear, which
satisfy ∂f /∂λ0 = ∂f /∂λ1 = 0, ∂f /∂q0 = ∂f /∂q1 = 0, ∂f /∂m = 0 with 0 < m < 1.
Numerical studies of the saddle point equations reveal thatq1 starts from about 0.93 and
m starts from 1.0 at T = T1 = 0.117, whereasq0 and λ0 are practically zero for all
temperatures. Note thatT1 is just aboveTs = 0.113. Numerical studies reveal thatT1 tends
to Ts asα decreases. The energye obtained from these solutions is presented in figure 2,
which takes about−0.448 and does not vary much in the low-temperature phase. In this
figure, the results of MC simulation and marginally stable solution (see below) are also
shown.

For the RSB ansatz, there are many studies on the stability of the solutions ([27] and
references therein). The most interesting modes are so-called replicon modes, which are
related to further steps RSB. In appendix C, we review the derivation of the eigenvalues
for our case, which is given by 1− gµ, where

g = − αβ2

(1+ βx0)2
(4.2)

µ = −
∫

Dz {cosh(
√
λ1z)}m cosh−4(

√
λ1z)∫

Dz {cosh(
√
λ1z)}m

. (4.3)

In the one-step RSB of the SK model, 1−gµ is negative, signalling further-steps RSB. For
our model withα < 1.4, it is found to be positive in one-step RSB solutions nearT1, but
asT decreases, it becomes negative.

The numerical estimates fore are obtained by MC simulations by decreasing the
temperature step by step. In the figures, we present the results which are obtained by
averaging over 2×104 MC steps at each temperature. The results of MC simulations show
a change of the temperature dependence ofe at a temperature slightly higher thanT1. The
numerical estimate ofe is about−0.440 in the wide range ofT , which is also higher than
the value of one-step RSB. As we shall see, these discrepancies are greatly enhanced for
smallerα. It is not possible to get better agreements by introducing higher-step RSB since
replicon modes have positive eigenvalues at least nearT1 in these one-step RSB solutions.

4.2. One-step RSB with the marginality condition

Having the discrepancy between MC simulations and usual RSB, we study the conjecture
described in [3], which is to impose the marginality condition to determinem. This condition
is originally introduced as a dynamical property of spin glass models [21, 22]. It is believed
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Figure 2. T -dependence ofe obtained by several methods forα = 1.0 with N = 200. The full
curve is RS, the broken curve is one-step RSB with the marginality condition, and the dotted
curve is static one-step RSB. The results of MC simulations are denoted by dots with error bars,
each of which is obtained by averaging over the 10 samples. For each sample,e is obtained by
averaging over 2× 104 MC steps at each temperature.

that the dynamical stability is marginal in the glassy phase because of the non-exponential
decay of autocorrelation functions. In the SK model, this situation may be achieved by many
steps RSB. As discussed above, static RSB for the anti-Hopfield model is stable at least
near the transition temperature. According to [3], we should search the replica solution with
the marginality condition to describe the dynamical phase transition of the MC simulations.
The following studies provide another test of this conjecture.

Using g andµ, the marginality condition for one-step RSB reads

1− gµ = 0. (4.4)

To obtain the solution with this condition,∂f/∂m = 0 in the saddle point equations
is replaced by (4.4) in numerical calculation. LetTg be the temperature at which the
marginal one-step RSB solution appears. Numerical studies reveal that the solutions with
the marginality condition appear atT = Tg = 0.137 for α = 1 and givese = −0.440 in
the wide range ofT < Tg. As shown in figure 2,Tg ande seem to be in good agreement
with the results obtained by MC simulations. However, for lowerT , e starts to decrease
and become smaller than the energies obtained by usual one-step RSB equations. At the
temperature where these two energies meet, two solutions coincide. These results imply
that the one-step RSB with the marginality condition is in better agreement with the results
obtained by simulation at least nearTg. However for smallerT , it fails to agree with the
simulation results.
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Figure 3. T -dependence ofe obtained by several methods forα = 0.5 with N = 200. The full
curve is RS, the broken curve is one-step RSB with the marginality condition, and the dotted
curve is static one-step RSB. The results of MC simulations are denoted by dots with error bars,
each of which is obtained by averaging over the 10 samples. For each sample,e is obtained by
averaging over 2× 104 MC steps at each temperature.

These studies are easily generalized to otherα. In the following, we shall describe the
results forα = 0.5 and 4.0.

In figure 3, the results forα = 0.5 are presented. In this case marginal RSB gives
Tg = 0.056 andq1 starts from 0.98 with m = 1.0. e takes−0.237 for moderateT < Tg.
On the other hand static RSB givesT1 = 0.024 andq1 starts from 0.995 withm = 1.0,
ande = −0.244 in the wide range of the low-temperature region. The difference between
the two kinds of one-step RSB solutions is much larger than the caseα = 1.0. Note that
Tg is two times larger thanT1 as well ase + α/2 for α = 0.5. As shown in figure 3, the
results of MC simulations are in good agreement with the marginal one-step RSB solutions
like the caseα = 1.0. For smallα, T1 is located just aboveTs , where RS entropy becomes
zero. This means that practicallyTs ∼ T1 and the entropy of static RSB is very close to
zero. After studying several smallα, we noticed thatq1 at Tg tends to 1 asα decreases.
These situations are very similar to the Ising perceptron [23] and p-spin model [24].

Figure 4 shows the results forα = 4.0, where the theoretical energy was obtained by
the static one-step RSB solution. In this case, static RSB solutions appear atTRS= 1, where
q1 andq0 appear continuously from zero.m starts from 0, taking the maximum value 0.53
nearT = 0.65 and tends to zero asT decreases. Numericale are slightly higher than the
value of one-step RSB, which will be improved by taking into account higher-steps RSB
since 1−gµ is negative for these solutions. These aspects are very similar to the SK model,
as expected from the discussions about the interactional eigenvalues.
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Figure 4. T -dependence ofe obtained by several methods forα = 4.0 with N = 200. In this
case, only static one-step RSB results are presented at low temperatures.

5. Discussions

In this paper, we have studied the anti-Hopfield model in the framework of one-step RSB
with the marginality condition. The model shows the behaviour which varies from SK-
like to ROM-like by changingα. For α = 0.5 and 1.0, one-step RSB solutions with the
marginality condition show good agreement with MC simulations at least nearTg. Internal
energies obtained by MC simulations are practically constant at low temperatures, whereas
the energy of marginal one-step RSB decreases asT decreases. The marginal RSB theory
with a reasonableT → 0 limit remains to be studied. Forα = 4.0, the usual RSB shows
good agreement with the simulation results. These phenomena, which look rather strange
at first sight, are reasonable because of the drastic change of the interactional eigenvalue
distribution aroundα ∼ 1, as discussed in section 2. Forα < 1, the largest eigenvalue
degenerates strongly, which may induce numerous states of similar energies. This may
be the reason why the dynamical phase transitions occur. The crossover aroundα ∼ 1.4
may be an interesting subject to study, although the numerical studies of the saddle point
equations will demand much computer time.

Also in section 2, we have discussed that the anti-Hopfield model can be viewed as an
optimization problem. This point of view can be generalized in the following way. In some
optimization problems [25], the cost functions take the form

H = 1
2

P∑
µ=1

(fµ)
2 (5.1)
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wherefµ are some functions ofN spin variablesSi . If fµ are linear functions,H becomes
an energy function of two-spin models, probably with external fields. Usually, the case
P ∼ N will be the most interesting situation. There have been some attempts to solve this
kind of problem by simulated annealing. Our studies imply that it works well to achieve
the low-cost states only ifP � N , whereas the caseP ∼ N seems rather difficult because
of the existence of the dynamical phase transition. This point was discussed for the Ising
perceptron problem [22]. In our model, the relative location ofTRS andTs depends on the
parameterP . It is interesting to find that the minimum ofH becomes easier asP increases,
although the minimum does not implyfµ ∼ 0 for all µ when P is large. As another
parameter, the effect of external fields in the anti-Hopfield model will be also an interesting
subject.

The anti-Hopfield model was originally motivated by the studies of unlearning in spin
glass models. Learning or unlearning in spin glass models induces correlations among
interactions. In the case of unlearning, frustrations among interactions increase. We believe
that the anti-Hopfield model reflects this aspect. As discussed in this paper, the spin glass
phase of this model for smallα is similar to ROM rather than the SK model. Although we
need to do further studies, we expect that the energy landscapes get more rugged and many
fixed points of spin dynamics are created by unlearning. This may imply that remnant
properties increase, which might work as some kind of very short-term memory in the
context of neural networks. This point deserves further investigation.

Appendix A

This appendix is devoted to the discussion about unlearning in the Hopfield model and the
pseudo-inverse interactions. It is known that the pseudo-inverse interactions have only two
eigenvalues. We discuss it from a different point of view.

Let us study the evolution ofJij for the Hopfield model withα < 1. AssumingJλ
depend on time, (1.2) and (2.4) gives the evolution equation for eigenvalues.

dJλ(t)

dt
= cJλ(t)− J 2

λ (t) (A.1)

wherec is a positive constant. When the Hopfield interactions

Jij (0) = 1

N

P∑
µ=1

ξ
µ

i ξ
µ

j (A.2)

are initial conditions includingJii = α, the initial eigenvalue distribution is obtained
by Jλ → −Jλ in (2.5), which means all eigenvalues are positive exceptJλ = 0. The
equation (A.1) implies that all positiveJλ(0) tend toc, whereasJλ = 0 does not change.
This yields

Jij (∞) = c
∑
Jλ>0

〈i|λ〉〈λ|j〉 (A.3)

where〈i|λ〉 are eigenvectors of (A.2). Note thatJij (∞) has two eigenvalues 0 andc.
Now we show thatJij (∞) are the pseudo-inverse interactions made ofξ

µ

i . Since〈i|λ〉
with Jλ > 0 andξµi make the same vector subspace, we can set

ξ
µ

i =
√
N
∑
λ

aλµ〈i|λ〉. (A.4)
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This yieldsJλ =
∑

µ a
2
λµ, which implies thataλµ is really P × P matrix becauseJλ = 0

for N − P eigenvectors. The pattern correlation matrix is given by

Cµν ≡
∑
i

ξ
µ

i ξ
ν
i /N

=
∑
λ

aλµaλν.

This and (A.4) give

Jij (∞) = c

N

∑
µν

ξ
µ

i C
−1µνξνj (A.5)

which are the pseudo-inverse interactions.

Appendix B

In this appendix we describe the derivation of replica free energy for the Hopfield model by
using the correlation functions of interactions. The free energy densityf is expressed
by f = −lnZ/βN , where Z is a partition function. By using the replica formula,
lnZ = limn→0(Zn − 1)/n, the problem reduces to the study of the expression given by

Zn =
∑
S

exp− 1
2β
∑
i 6=j

Jij�ij (B.1)

where�ij =
∑

α S
α
i S

α
j . After expandingZn in terms ofJij , we have

Zn =
∑
S

∏
i<j

(1− βJij�ij + 1
2β

2(Jij�ij )
2+ · · ·). (B.2)

EachJij can be represented as a line with a site at each end. After averaging overξ
µ

i

for the anti-Hopfield model, the contributions which remain are loops made of these lines.
These loops can share sites and lines, but these are expressed as a product of loops which
visit each site once, which are denoted by

J (k) = JikJkl . . . Jli (B.3)

where the number ofJij is k and the site indices are all different.J (k) are independent
of the site indices because of averaging overξ

µ

i . Exponentiating the contributions and
disregarding higher order terms of 1/N , we obtain

Zn =
∑
S

exp
∞∑
k=2

βkJ (k)

2k
Tr�k. (B.4)

Although the site indices in Tr�k are also different, this restriction can be removed to the
leading order ofN . Then Tr�k = Nk Tr qk, whereq is a spin glass order parameter matrix
which has elementsqαβ =

∑
i S

α
i S

β

i /N , includingqαα = 1. UsingJ (k) = (−1)kα/Nk−1 for
the anti-Hopfield model, we obtain

Zn =
∑
S

exp−N
2
α Tr{ln(1+ βq)− βq}. (B.5)

Now, by inserting

1=
∫ ∏

α<β

N dqαβδ

(
Nqαβ −

∑
i

Sαi S
β

i

)

=
∫ ∫ i∞

−i∞

∏
α<β

N dqαβ dλαβ
2π i

exp−λαβ
(
Nqαβ −

∑
i

Sαi S
β

i

)
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we obtain

nβf = 1
2α Tr{ln(1+ βq)− βq} + 1

2

∑
α 6=β

qαβλαβ − ln
∑
S

exp 1
2

∑
α 6=β

λαβS
αSβ. (B.6)

For the Hopfield model,J (k) = α/Nk−1, which leads toβ →−β in the right-hand side of
(B.6).

In the one-step RSB ansatz, matrixqαβ is divided inton/m × n/m sub-blocks of the
sizem×m, where diagonal sub-blocks have elementsq1 and off-diagonal sub-blocks have
elementsq0. For λαβ , we assumeλ1 andλ0 in the same manner. Thenq has eigenvalues,
1+m(q1− q0)− q1+ nq0, 1+m(q1− q0)− q1, and 1− q1 with degeneracies 1,n/m− 1,
andn− n/m respectively. This leads to (4.1) in then→ 0 limit.

Appendix C

This appendix is devoted to the calculation of the eigenvalue of the replicon mode for
one-step RSB. There are many references on this subject ([27] and references therein). We
mainly follow [3], although the description here will be restricted to the minimum which
is needed in this paper. Small changes from one-step RSB are denoted byδqαβ andδλαβ .
Let us set

g(x) = α

2
(ln(1+ x)− x)

=
∞∑
k=2

ckx
k. (C.1)

Then the second-order terms innβf are given by

nβδ2f = 1
2

∑
(αβ)(γ δ)

G(αβ)(γ δ)δqαβδqγ δ +
∑
(αβ)

δqαβδλαβ + 1
2

∑
(αβ)(γ δ)

F(αβ)(γ δ)δλαβδλγ δ (C.2)

where

G(αβ)(γ δ) = ∂2 Tr g(βq)

∂qαβ∂qγ δ

=
∑

ckβ
k2k

∂(qk−1)αβ

∂qγ δ
(C.3)

F(αβ)(γ δ) = 〈SαSβ〉〈Sγ Sδ〉 − 〈SαSβSγ Sδ〉. (C.4)

In one-step RSB withq0 = λ0 = 0, the nonzero elements of (C.3) and (C.4) take six
different values respectively. Three of them which have replica indices in the same sub-
blocks contribute to the replicon mode. Let us concentrate on this case. ForG(αβ)(γ δ), they
are denoted byP ′ for (αβ) = (γ δ), Q′ for α = γ , β 6= δ, andR′ for different α, β, γ , δ.
For F(αβ)(γ δ), P , Q andR, are expressed by

P = I 2
2 − 1

Q = I 2
2 − I2

R = I 2
2 − I4

where

IL =
∫

Dz {cosh(
√
λ1z}m tanhL(

√
λ1z)∫

Dz {cosh(
√
λ1z}m

. (C.5)
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The diagonalizations ofG(αβ)(γ δ) andF(αβ)(γ δ) are the same as the studies of RS instability
[26]. Then, in the space of a replicon mode, the matrix reduces to(

g 1
1 µ

)
whereg = P ′ − 2Q′ + R′ andµ = P − 2Q+ R. Sinceδλαβ are actually pure imaginary,
the condition that the product of two eigenvalues is positive leads to

1− gµ > 0. (C.6)

µ is explicitly given by (4.3). To evaluateg, we need some extra calculations forP ′, Q′,
andR′, which consist of the expression

∂(qk−1)αβ

∂qγ δ
=

k−2∑
l=0

{(qk−2−l)αγ (ql)δβ + (qk−2−l)αδ(ql)γβ}. (C.7)

This expression takes three different values depending on the combination of replica indices.
Each value reduces to different combinations of matrix elements ofql . The elements ofql

are given by(ql)αα = val+wbl , and(ql)αβ = ral+sbl for sub-blocks, wherev = r = 1/m,
w = 1− 1/m, s = −1/m, a = 1+ (m − 1)q1, b = 1− q1. Using the expressions forql ,
(C.1), and (C.3), we obtain

g = (v − r)22β2g′′(βa)+ (w − s)22β2g′′(βb)+ 2(v − r)(w − s)2β g
′(βb)− g′(βa)

b − a
= 2β2g′′(βb)

which equals−αβ2/(1+ β(1− q1))
2 for the anti-Hopfield model.

References

[1] Kirkpatrick T R and Thirumalai D 1987Phys. Rev.B 5388
[2] Crisanti A, Horner H and Sommers H J 1993Z. Phys.B 92 257
[3] Marinari E, Parisi G and Ritort F 1994J. Phys. A: Math. Gen.27 7647
[4] Hopfield J J 1982Proc. Natl Acad. Sci., USA79 2554
[5] Amit D J, Gutfreund H and Sompolinsky H 1987Ann. Phys.173 30
[6] Crick F and Mitchison G 1983Nature304 111
[7] Hopfield J J, Feinstein D I and Palmer R G 1983Nature304 158
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